合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 溫度對甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(三)
> 表面張力儀在藥物研發(fā)領域的應用【案例】
> ?什么是表面張力?表面張力儀的結構組成、測試過程、校準方法、分類及應用
> 石油磺酸鹽中有效組分的結構與界面張力的關系
> C72-MPB氟醚磷酸膽堿表面活性劑表面張力、泡沫/潤濕性能測定(三)
> 研究發(fā)現(xiàn):水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(一)
> 三元復合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 土壤裂隙發(fā)育過程中氣—液界面張力因素
> 不同含水率的三元體系與原油乳化過程中界面張力變化規(guī)律
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(一)
推薦新聞Info
-
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(一)
> 三元復合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——結論
> 三元復合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關系(二)
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關系(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
> 鹽水上下一樣咸嗎為什么?芬蘭Kibron公司表面張力儀揭曉答案
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
來源:化工學報 瀏覽 49 次 發(fā)布時間:2025-05-13
2.3 CO2界面過余量
由上述有關界面處密度的討論可知,溫度及壓強對CO2相的CO2密度有較大的影響,為了更加全面地分析界面處CO2分子對界面張力的影響,本文進一步分析了343~373 K和6~35 MPa的CO2-NaCl系統(tǒng)的CO2界面過余量,計算結果示于圖4。由圖4可知,343 K和373 K時,CO2界面過余量均隨著壓強的升高而逐漸升高,直至到達穩(wěn)定值。具體來說,在343 K時,CO2界面過余量隨著壓強的升高不斷升高,從壓強6.5 MPa的1.24μmol·m-2,直至壓力平衡點15 MPa之后達到并穩(wěn)定在1.50μmol·m-2左右;373 K時CO2界面過余量變化規(guī)律與343 K時基本一致,界面過余量從壓強8 MPa時的0.93μmol·m-2開始逐漸升高,直至壓力平衡點25 MPa后穩(wěn)定在約1.57μmol·m-2。
圖4 343 K和373 K下的界面張力和CO2界面過余量
由圖4中CO2界面過余量及IFT和溫度、壓強的變化關系可以發(fā)現(xiàn),在pplateau之前,CO2界面過余量隨著壓強的升高或溫度的降低而升高,而pplateau后,CO2界面過余量趨于穩(wěn)定且受溫度影響較小。CO2界面過余量受溫度、壓強的影響與IFT受溫度、壓強的影響結果恰好相反。這表明IFT受溫度、壓強變化的影響可理解為:壓力平衡點之前的壓強的升高或溫度的降低均使得CO2分子在界面處的累積量增加,界面處CO2數(shù)量的增加可能是導致IFT降低的原因之一。
2.4 CO2水合物密度
由于CO2界面過余量隨溫度、壓強變化的關系與IFT值變化規(guī)律相反,界面處CO2分子對IFT有著較大影響??紤]到界面附近CO2分子與水分子作用距離較近,極易形成CO2水合物,故本文進一步研究了343~373 K和6~35 MPa的CO2-NaCl系統(tǒng)界面處的水合物數(shù)量及密度。其中部分溫度、壓強條件下的界面處水合物分析結果示于圖5。
圖5 343 K和373 K下界面處水合物數(shù)量
由圖5可知,當溫度恒定時,界面處水合物數(shù)量隨著壓強的升高而增加,并逐漸趨于穩(wěn)定值。當溫度為343 K時,水合物數(shù)量由90不斷升高并穩(wěn)定至118(6.5~24 MPa);而373 K時,水合物數(shù)量則由74升高并穩(wěn)定至130(11~35 MPa)。
為排除模型尺寸對水合物數(shù)量的影響,本文將各溫度、壓強條件下的水合物數(shù)量除以截面積,計算出水合物面密度,其值示于圖6。
由圖6可知,水合物密度隨壓強升高而逐漸降低,下降速率逐漸趨于平緩,最終在IFT的壓力平衡點pplateau處達到飽和,密度值恒定。水合物密度與IFT值隨溫度、壓強變化呈現(xiàn)相反趨勢。因此可推測,溫度及壓強直接影響了界面處水合物密度,而界面處水合物密度的變化可能是導致界面張力變化的重要因素。
圖6 343 K和373 K下的界面張力和界面處水合物密度
3結論
本文應用MD模擬的方法進行了溫度和壓強在343~373 K和6~35 MPa范圍內(nèi)鹽濃度為1.89 mol·L-1的CO2-NaCl鹽水系統(tǒng)的界面特性研究,探討了IFT隨溫度、壓強變化的微觀機理及壓力平衡點pplateau的存在原因,得出以下結論。
(1)CO2密度隨著壓強增加或溫度降低而升高,其密度升高將增大CO2分子與界面水分子的引力,降低界面水分子所受到的水相內(nèi)部的引力,最終導致壓強增加或溫度降低時IFT下降的趨勢。
(2)恒溫時CO2界面過余量隨壓強升高而增加,并且在pplateau之后增加變緩。該值隨溫度、壓強變化的趨勢與IFT的變化趨勢相反,CO2界面過余量對于IFT存在顯著的負作用。
(3)界面處CO2水合物的密度隨溫度、壓強變化的趨勢與IFT的變化趨勢相反。溫度恒定時,界面處水合物數(shù)量隨著壓強的升高而升高,升高速率逐漸降低,隨后趨于定值。界面處水合物數(shù)量在高壓下的飽和現(xiàn)象可能是導致壓力平衡點pplateau產(chǎn)生的主要因素。
符號說明
A——界面截面積,m2
p——壓強,MPa
pplateau——壓力平衡點,MPa
pxx——x方向壓強張量對z向的角分量,Pa
pyy——y方向壓強張量對z向的角分量,Pa
pzz——z方向壓強張量對z向的角分量,Pa
qi——i離子的電荷數(shù),e
qj——j離子的電荷數(shù),e
rij——原子i和j之間的距離,nm
Si——i物質(zhì)的界面過余量,μmol·m-2
T——溫度,K
γ——界面張力,mN·m-1
εij——蘭納-瓊斯勢能阱深度,kJ·mol-1
ε0——真空介電常數(shù)
σij——蘭納-瓊斯勢能為零時距離,nm